Extensions 1→N→G→Q→1 with N=C22 and Q=C2xS4

Direct product G=NxQ with N=C22 and Q=C2xS4
dρLabelID
C23xS424C2^3xS4192,1537

Semidirect products G=N:Q with N=C22 and Q=C2xS4
extensionφ:Q→Aut NdρLabelID
C22:(C2xS4) = C2xC22:S4φ: C2xS4/C23S3 ⊆ Aut C22126+C2^2:(C2xS4)192,1538
C22:2(C2xS4) = D4xS4φ: C2xS4/S4C2 ⊆ Aut C22126+C2^2:2(C2xS4)192,1472
C22:3(C2xS4) = C2xA4:D4φ: C2xS4/C2xA4C2 ⊆ Aut C2224C2^2:3(C2xS4)192,1488

Non-split extensions G=N.Q with N=C22 and Q=C2xS4
extensionφ:Q→Aut NdρLabelID
C22.1(C2xS4) = C2xC42:S3φ: C2xS4/C23S3 ⊆ Aut C22123C2^2.1(C2xS4)192,944
C22.2(C2xS4) = C24:D6φ: C2xS4/C23S3 ⊆ Aut C2286+C2^2.2(C2xS4)192,955
C22.3(C2xS4) = C42:D6φ: C2xS4/C23S3 ⊆ Aut C22126+C2^2.3(C2xS4)192,956
C22.4(C2xS4) = D4:2S4φ: C2xS4/S4C2 ⊆ Aut C22246C2^2.4(C2xS4)192,1473
C22.5(C2xS4) = D4.4S4φ: C2xS4/S4C2 ⊆ Aut C22164C2^2.5(C2xS4)192,1485
C22.6(C2xS4) = D4.5S4φ: C2xS4/S4C2 ⊆ Aut C22324-C2^2.6(C2xS4)192,1486
C22.7(C2xS4) = C24.10D6φ: C2xS4/C2xA4C2 ⊆ Aut C22246C2^2.7(C2xS4)192,1471
C22.8(C2xS4) = GL2(F3):C22φ: C2xS4/C2xA4C2 ⊆ Aut C22324C2^2.8(C2xS4)192,1482
C22.9(C2xS4) = C4xCSU2(F3)central extension (φ=1)64C2^2.9(C2xS4)192,946
C22.10(C2xS4) = CSU2(F3):C4central extension (φ=1)64C2^2.10(C2xS4)192,947
C22.11(C2xS4) = C4xGL2(F3)central extension (φ=1)32C2^2.11(C2xS4)192,951
C22.12(C2xS4) = GL2(F3):C4central extension (φ=1)32C2^2.12(C2xS4)192,953
C22.13(C2xS4) = C4xA4:C4central extension (φ=1)48C2^2.13(C2xS4)192,969
C22.14(C2xS4) = C24.3D6central extension (φ=1)48C2^2.14(C2xS4)192,970
C22.15(C2xS4) = C24.4D6central extension (φ=1)48C2^2.15(C2xS4)192,971
C22.16(C2xS4) = C24.5D6central extension (φ=1)24C2^2.16(C2xS4)192,972
C22.17(C2xS4) = C2xQ8:Dic3central extension (φ=1)64C2^2.17(C2xS4)192,977
C22.18(C2xS4) = C23.15S4central extension (φ=1)32C2^2.18(C2xS4)192,979
C22.19(C2xS4) = C4.A4:C4central extension (φ=1)64C2^2.19(C2xS4)192,983
C22.20(C2xS4) = (C2xC4).S4central extension (φ=1)64C2^2.20(C2xS4)192,985
C22.21(C2xS4) = C25.S3central extension (φ=1)24C2^2.21(C2xS4)192,991
C22.22(C2xS4) = C2xA4:Q8central extension (φ=1)48C2^2.22(C2xS4)192,1468
C22.23(C2xS4) = C2xC4xS4central extension (φ=1)24C2^2.23(C2xS4)192,1469
C22.24(C2xS4) = C2xC4:S4central extension (φ=1)24C2^2.24(C2xS4)192,1470
C22.25(C2xS4) = C22xCSU2(F3)central extension (φ=1)64C2^2.25(C2xS4)192,1474
C22.26(C2xS4) = C22xGL2(F3)central extension (φ=1)32C2^2.26(C2xS4)192,1475
C22.27(C2xS4) = C2xQ8.D6central extension (φ=1)32C2^2.27(C2xS4)192,1476
C22.28(C2xS4) = C2xC4.S4central extension (φ=1)64C2^2.28(C2xS4)192,1479
C22.29(C2xS4) = C2xC4.6S4central extension (φ=1)32C2^2.29(C2xS4)192,1480
C22.30(C2xS4) = C2xC4.3S4central extension (φ=1)32C2^2.30(C2xS4)192,1481
C22.31(C2xS4) = C22xA4:C4central extension (φ=1)48C2^2.31(C2xS4)192,1487
C22.32(C2xS4) = Q8:Dic6central stem extension (φ=1)64C2^2.32(C2xS4)192,945
C22.33(C2xS4) = Q8.Dic6central stem extension (φ=1)64C2^2.33(C2xS4)192,948
C22.34(C2xS4) = Q8.D12central stem extension (φ=1)64C2^2.34(C2xS4)192,949
C22.35(C2xS4) = SL2(F3):Q8central stem extension (φ=1)64C2^2.35(C2xS4)192,950
C22.36(C2xS4) = Q8:D12central stem extension (φ=1)32C2^2.36(C2xS4)192,952
C22.37(C2xS4) = Q8.2D12central stem extension (φ=1)32C2^2.37(C2xS4)192,954
C22.38(C2xS4) = C23.14S4central stem extension (φ=1)32C2^2.38(C2xS4)192,978
C22.39(C2xS4) = C23.16S4central stem extension (φ=1)32C2^2.39(C2xS4)192,980
C22.40(C2xS4) = SL2(F3).D4central stem extension (φ=1)64C2^2.40(C2xS4)192,984
C22.41(C2xS4) = SL2(F3):D4central stem extension (φ=1)32C2^2.41(C2xS4)192,986

׿
x
:
Z
F
o
wr
Q
<